Techno-Anthropocene: Is There Enough Energy for the Techno Fix?

9 05 2014

The Anthropocene: It’s Not All About Us

Time to celebrate! Woo-hoo! It’s official: we humans have started a new geological epoch—the Anthropocene. Who’d have thought that just one species among millions might be capable of such an amazing accomplishment?

Let’s wait to stock up on party favors, though. After all, the Anthropocene could be rather bleak. The reason our epoch has acquired a new name is that future geologists will be able to spot a fundamental discontinuity in the rock strata that document our little slice of time in Earth’s multi-billion year pageant. This discontinuity will be traceable to the results of human presence. Think climate change, ocean acidification, and mass extinction.
Welcome to the Anthropocene: a world that may feature little in the way of multi-cellular ocean life other than jellyfish, and one whose continents might be dominated by a few generalist species able to quickly occupy new and temporary niches as habitats degrade (rats, crows, and cockroaches come to mind). We humans have started the Anthropocene, and we’ve proudly named it for ourselves, yet ironically we may not be around to enjoy much of it. The chain of impacts we have initiated could potentially last millions of years, but it’s a tossup whether there will be surviving human geologists to track and comment on it.
To be sure, there are celebrants of the Anthropocene who believe we’re just getting started, and that humans can and will shape this new epoch deliberately, intelligently, and durably.Mark Lynas, author of The God Species, contends the Anthropocene will require us to think and act differently, but that population, consumption, and the economy can continue to grow despite changes to the Earth system. Stewart Brand says we may no longer have a choice as to whether to utterly re-make the natural world; in his words, “We only have a choice of terraforming well. That’s the green project for this century.” In their book Love Your Monsters: Postenvironmentalism and the Anthropocene, Michael Schellenberger and Ted Nordhaus of the Breakthrough Institute say we can create a world where 10 billion humans achieve a standard of living allowing them to pursue their dreams, though this will only be possible if we embrace growth, modernization, and technological innovation. Similarly, Emma Marris (who admits to having spent almost no time in wilderness), argues in Rambunctious Garden: Saving Nature in a Post-Wild World that wilderness is gone forever, that we should all get used to the idea of the environment as human-constructed, and that this is potentially a good thing.
Is the Anthropocene the culmination of human folly or the commencement of human godhood? Will the emerging epoch be depleted and post-apocalyptic, or tastefully appointed by generations of tech-savvy ecosystem engineers? Environmental philosophers are currently engaged in what amounts to a heated debate about the limits of human agency. That discussion is especially engrossing because . . . it’s all about us!

The viability of the “we’re-in-charge-and-loving-it” version of the Anthropocene—let’s call it the Techno-Anthropocene—probably hinges on prospects for nuclear power. A concentrated, reliable energy source will be required for the maintenance and growth of industrial civilization, and just about everybody agrees that—whether or not we’re at the point of “peak oil”—fossil fuels won’t continue energizing civilization for centuries and millennia to come. Solar and wind are more environmentally benign sources, but they are diffuse and intermittent. Of society’s current non-fossil energy sources, only nuclear is concentrated, available on demand, and (arguably) capable of significant expansion. Thus it’s no accident that Techno-Anthropocene boosters such as Mark Lynas, Stewart Brand, Ted Nordhaus, and Michael Schellenberger are also big nuclear proponents.
But the prospects for current nuclear technology are not rosy. The devastating Fukushima meltdowns of 2011 scared off citizens and governments around the globe. Japan will be dealing with the radiation and health impacts for decades if not centuries, and the West Coast of the US is gearing up for an influx of radioactive ocean waterand debris. There is still no good solution for storing the radioactive waste produced even when reactors are operating as planned. Nuclear power plants are expensive to build and typically suffer from hefty cost over-runs. The world supply of uranium is limited, and shortages are likely by mid-century even with no major expansion of power plants. And, atomic power plants are tied to nuclear weapons proliferation.
In 2012, The Economist magazine devoted a special issue to a report on nuclear energy; tellingly, the report was titled, “Nuclear Power: The Dream that Failed.” Its conclusion: the nuclear industry may be on the verge of expansion in just a few nations, principally China; elsewhere, it’s on life support.
None of this daunts Techno-Anthropocene proponents, who say new nuclear technology has the potential to fulfill the promises originally made for the current fleet of atomic power plants. The centerpiece of this new technology is the Integral Fast Reactor (IFR).
Unlike light water reactors (which comprise the vast majority of nuclear power plants in service today), IFRs would use sodium as a coolant. The IFR nuclear reaction features fast neutrons, and it more thoroughly consumes radioactive fuel, leaving less waste. Indeed, IFRs could use current radioactive waste as fuel. Also, they are alleged to offer greater operational safety and less risk of weapons proliferation.
These arguments are forcefully made in the 2013 documentary, “Pandora’s Promise,” produced and directed by Robert Stone. The film asserts that IFRs are our best tool to mitigate anthropogenic global warming, and it goes on to claim there has been a deliberate attempt by misguided bureaucrats to sabotage the development of IFR reactors.
However, critics of the film say these claims are overblown and that fast-reactor technology is highly problematic. Earlier versions of the fast breeder reactor (of which IFR is a version) were commercial failures and safety disasters. Proponents of the Integral Fast Reactor, say the critics, overlook its exorbitant development and deployment costs and continued proliferation risks. IFR theoretically “transmutes,” rather than eliminates, radioactive waste. Yet the technology is decades away from widespread implementation, and its use of liquid sodium as a coolant can lead to fires and explosions.
David Biello, writing in Scientific Americanconcludes that, “To date, fast neutron reactors have consumed six decades and $100 billion of global effort but remain ‘wishful thinking.’”
Even if advocates of IFR reactors are correct, there is one giant practical reason they may not power the Anthropocene: we likely won’t see the benefit from them soon enough to make much of a difference. The challenges of climate change and fossil fuel depletion require action now, not decades hence.
Assuming enough investment capital, and assuming a future in which we have decades in which to improve existing technologies, IFR reactors might indeed show significant advantages over current light water reactors (only many years of experience can tell for sure). But we don’t have the luxury of limitless investment capital, and we don’t have decades in which to work out the bugs and build out this complex, unproven technology.
The Economist’s verdict stands: “[N]uclear power will continue to be a creature of politics not economics, with any growth a function of political will or a side-effect of protecting electrical utilities from open competition. . . . Nuclear power will not go away, but its role may never be more than marginal.”
*          *          *
Defying risk of redundancy, I will hammer home the point: cheap, abundant energy is the prerequisite for the Techno-Anthropocene. We can only deal with the challenges of resource depletion and overpopulation by employing more energy. Running out of fresh water? Just build desalination plants (that use lots of energy). Degrading topsoil in order to produce enough grain to feed ten billion people? Just build millions of hydroponic greenhouses (that need lots of energy for their construction and operation). As we mine deeper deposits of metals and minerals and refine lower-grade ores, we’ll require more energy. Energy efficiency gains may help us do more with each increment of power, but a growing population and rising per-capita consumption rates will more than overcome those gains (as they have consistently done in recent decades). Any way you look at it, if we are to maintain industrial society’s current growth trajectory we will need more energy, we will need it soon, and our energy sources will have to meet certain criteria—for example, they will need to emit no carbon while at the same time being economically viable.
These essential criteria can be boiled down to four words: quantity, quality, price, andtiming. Nuclear fusion could theoretically provide energy in large amounts, but not soon. The same is true of cold fusion (even if—and it’s a big if—the process can be confirmed to actually work and can be scaled up). Biofuels offer a very low energy return on the energy invested in producing them (a deal-breaking quality issue). Ocean thermal and wave power may serve coastal cities, but again the technology needs to be proven and scaled up. Coal with carbon capture and storage is economically uncompetitive with other sources of electricity. Solar and wind are getting cheaper, but they’re intermittent and tend to undermine commercial utility companies’ business models. While our list of potential energy sources is long, none of these sources is ready to be plugged quickly into our existing system to provide energy in the quantity, and at the price, that the economy needs in order to continue growing.
This means that humanity’s near future will almost certainly be energy-constrained. And that, in turn, will ensure—rather than engineering nature on an ever-greater scale—we will still be depending on ecosystems that are largely beyond our control.
As a species, we’ve gained an impressive degree of influence over our environment by deliberately simplifying ecosystems so they will support more humans, but fewer other species. Our principal strategy in this project has been agriculture—primarily a form of agriculture that focuses on a few annual grain crops. We’ve commandeered up to 50 percent of the primary biological productivity of our planet, mostly through farming and forestry. Doing this has had overwhelmingly negative impacts on non-domesticated plants and animals. The subsequent loss of biodiversity is increasingly compromising humanity’s prospects, because we depend upon countless ecosystem services (such as pollination and oxygen regeneration)—services we do not organize or control, and for which we do not pay.
The essence of our problem is this: the side effects of our growth binge are compounding rapidly and threaten a crisis in which the artificial support systems we’ve built over past decades (food, transport, and financial systems, among others)—as well as nature’s wild systems, on which we still also depend—could all crash more or less simultaneously.
If we’ve reached a point of diminishing returns and potential crisis with regard to our current strategy of constant population/consumption growth and ecosystem takeover, then it would seem that a change of direction is necessary and inevitable. If we were smart, rather than attempting to dream up ways of further re-engineering natural systems in untested (and probably unaffordable) ways, we would be limiting and ameliorating the environmental impacts of our global industrial system while reducing our population and overall consumption levels.
If we don’t proactively limit population and consumption, nature will eventually do it for us, and likely by very unpleasant means (famine, plague, and perhaps war). Similarly, we can rein in consumption simply by continuing to deplete resources until they become unaffordable.
Governments are probably incapable of leading a strategic retreat in our war on nature, as they are systemically hooked on economic growth. But there may be another path forward. Perhaps citizens and communities can initiate a change of direction. Back in the 1970s, as the first energy shocks hit home and the environmental movement flourished, ecological thinkers began tackling the question: what are the most biologically regenerative, least harmful ways of meeting basic human needs? Two of these thinkers, Australians David Holmgren and Bill Mollison, came up with a system they called Permaculture. According to Mollison, “Permaculture is a philosophy of working with, rather than against nature; of protracted and thoughtful observation rather than protracted and thoughtless labor; and of looking at plants and animals in all their functions, rather than treating any area as a single-product system.”  Today there are thousands of Permaculturepractitioners throughout the world, and Permaculture Design courses are frequently on offer in almost every country.
 Other ecologists didn’t aim to create an overarching system, but merely engaged in piecemeal research on practices that might lead to a more sustainable mode of food production—practices that include intercropping, mulching, and composting. One ambitious agricultural scientist, Wes Jackson of the Land Institute in Salina Kansas, has spent the past four decades breeding perennial grain crops (he points out that our current annual grains are responsible for the vast bulk of soil erosion, to the tune of 25 billion tons per year).
Meanwhile, community resilience efforts have sprung up in thousands of towns and cities around the world—including the Transition Initiatives, which are propelled by a compelling, flexible, grassroots organizing model and a vision of a future in which life is better without fossil fuels.
Population Media Center is working to ensure we don’t get to ten billion humans by enlisting creative artists in countries with high population growth rates (which are usually also among the world’s poorest nations) to produce radio and television soap operas featuring strong female characters who successfully confront issues related to family planning. This strategy has been shown to be the most cost-effective and humane means of reducing high birth rates in these nations.
What else can be done? Substitute labor for fuel. Localize food systems. Capture atmospheric carbon in soil and biomass. Replant forests and restore ecosytems. Recycle and re-use. Manufacture more durable goods. Rethink economics to deliver human satisfaction without endless growth. There are organizations throughout the world working to further each of these goals, usually with little or no government support. Taken together, they could lead us to an entirely different Anthropocene.
Call it the Lean-Green Anthropocene.



Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: